THE MORPHOLOGY OF NIPPOSTRONGYLUS MAGNUS, A PARASITE OF NATIVE. AUSTRALIAN RODENTS

by Ian Beveridge \& Marie-Claide Dlrette-Dessft*

Summary

Abstract

 Australian rodents. Trans. R. Soe S. Aust. 116(3). $109-115,30$ November 1992. Nippostrongv/as magnus (Mawson) (Nematoda. Trichossrongylondea) is redeseribed from speeimens from natually-imfected Kama fuscipes from Blachwood. Victoria and fron experimentally infected R. fustipes and R. forresicus. The asymonery of ithe bursa, a characterixatic of the genus, is matched by asymmery of the spieule en and gerital cone. The syntophe is simbar to that of N brisiliensis but incledes some variable fealures which appear to be of specifie value The murphological differences in N. mugnos ure discussed in relationship to the estimaled period of epparation from its congener, N. brasiliensis.

Introduction

During a study of the helminth parasites of the bush rat. Ratrus fuscipex, a particular nematode species. Nippostrongylus magnus (Mawson) was encountered commonly in the duodenum. The species was described originally by Mawson (1961), although features of the complement of suticular ridges, the symbophe, were not described. Some features of iss synlophe were described by Durette-Desset (1969) and by Nichtenfels (1974), based on at smatl number of specimens, and in the latter paper their use for taxonomic purposes at the species level was considered. N maguths has never been described in detail, and the use of the synlophe to identify species of Nippostrongyius as suggested by Durette-Desset (1970) and Liehtenfels (1974) has not been fully explored.

It was evident therefore that a detailed redescription of the nematode, particularly features of the synloptes, would aflow a more definitive assessment of whether it provided useful raxonomic characteristics at the species level, as is the case in other trichostrongyloid genera. It would also provide a basis for subsequent ultrastruccural and life-history studies of this parasite.

Materials and Methods

Nematodes were obtained Trom itaturally infected Ratus firscipes collected is Blackwood. Vietoris (37 $29^{\circ} \mathrm{S}$. $144^{\circ} 19^{\circ}$ E) and from laboratory raised R. fiscipes and R. norvegicus which had been infected experimentally with third-stage larvae of the species,

[^0]Nematodes were collected live, washed in 0.9% saline and fixed in hot 70% ethanol. Additional specimens were fixed in 2.5% glutaraldelyde in phosphate buffer ut $4^{\circ} \mathrm{C}$ and embedded in resin. Sections if $\mu \mathrm{m}$ thick were stained with toludine blue, examined under the light microscope and photographed. Whole specimens were examined using Nomarski interference contras microscopy after clearing in lactoptenol and drawings were made with the aid of a drawing tube attached to an Olympus BH microscope. Apical views and transverse sections of the nematode hody were prepared by hand using a cataract scalpel. Morphological terms for the complement of body ridges or synlophe and the numbering system for bursal rays follow Durctue-Desset (1971, 1985).

Numbering of syrilophe ridges was based on relationstiip to the axis of orientation of the synlophe as described by Durette-Desset (1971). Ridges dorsal id the axis were numbered from left to tight 1.2 .3 etc.: ridges ventral to the axis were numbered from left to right $1^{\prime}, 2^{\prime}, 3^{\prime} \ldots$, ete Measurements are given in min as the range followed by the mean of Five specimens in pareniheses.

Specimens examined have been deposited in the South Australian Museum (SAM), Adelaide.

Nippostrongylus magnus (Mawson) CIGS I-20

Ahstrohe higmonema magitum Mawsom, 1961, pp 816-817, Jigs 46-47, from Rallus jisecipes, R, rollur, R. sonatus, \vec{R} norkegicus and Medums cerinipes; Durette Desset (1969). p. 737, tig. 3 (a* A. magna from Rumas sp).

Nipposiremyvas maphas. Durette-Desset (1971), p. 818: Lichtentels (1974). 1. 286 . (as N masea): Obendor (1979). p. 868.896 .

Material examined. From Ratlus fuscipes: natural infections: 200%, 20 Q Q, Blackwond, Vic.. 30 of. 49 马. depasited (SAM HC22M77): experimental infections: $40^{\circ} \mathrm{E} .22 \mathrm{Q}$ (SAM HC22878): From Rathes nurvericus experimental infections: 20 or or 16 Q \& (SAM HC22875).

Duacriptione Small. sintserally-coled nematodes. red incolour when live; prominent slightly asymmetrical cephalic vesicle presens, buccal capsule vestigial: mouth apening sub-triangular, surmounded by six tim labijl papilace, four double submedian papillae und patred imphids prosent. external io labial papillae. besophagus clavikorm; ncrve fing in mid-wesophageal region. dearids dome-shaped. an region of exeretory part.

Syuloghe enmposed of 14 tidges in mid-body region: axis of oriemation from tight-ventral lield to leff dorkal field. at apptoximately 60° to sagital axis (Fig. 15): cartae. it cuticular swelling present in left doral freld between ridges 2^{\prime} and 4 : eight ridges an dorval Fiekd: ridges, 1-4 diminishing in si/e, ridges 5 and 6 larger than 7 and 8: six ridges in dorsal field. ridge I"very large. dinishing in sixe to ndge 6; all ridges arise immediately prosterior to cephatio vesicte except for cidges 3.2 .1 which arise progiessively between vesicte ont excretory pore. ridges sometimes interiupted in mud-body region, number and orientation of ridges alters in posteriot extennity al body.

Mfalo Length 3. $3-42$ (3.7). maxmum widh 0 ($0-0.14$ (0.11): ecphatie vesicle 006-007 (0.0655 long: besophagus $036-0.53(0.44)$, nerve ring 0.17 from atherior chd: excretury pore $0.25-0.32$ (0.28) Irom anterior end: deicids $026-0.32(0.29)$ from anterior end; spicules $0.50-0.54$ (0.52): gubernaculum 005 long. Synlophe: additional ridge arises in right veni ral field in region of spicules. between 0.45 ari 0.85 from posterior end, immediatcly anterior to bursil. additonal dorsal ndge present, with eight darsal and eight ventral ridges; ridges reduced in size, griemagion barely diseernible, ridges of similar suze: irregular amastrmansing and branching of ridgex seen close to bursit. Bursa asymmetrical, right lateral fohe longer than left; dorsal lobe reduced. Dorsal ray with hays 8 ariking at different levels; left ruy 8 mope robust and st हing posterior to right: major bifurcatuon of dorsal tray in posterior thatd of its lenglfis rays of as long as internal rays (10): latter with suggestion of secomdary lateral lobies on left, 1 sy 6 robust. arising close to dorsal runk, reaching margin of bursa; rays 5 and 4 stender. not reaching margin of bursa. common lateral trunk with pmoninent bulge at ongen of ray 5: Tays. 3 and 2 elongatc. slender. reachug murgin of bursa: on right, fuy 6 short. slender, mising from tateral trunk; ray 5 slender, reaching matgin of bursit: ray 4 extremely
robust at thase, exiremity slender. reaching margif of bursa: rays 3 and 2 slender. reaching margin of bursa Gental sone prominent, elongite, conical. lightly sclerolised ventral lobe simple with globoid, nonsctemtised apical appendage: dorsal lobe with (wo unequal pointed ends. lip surrounded by elongate ippendage. Spleules elongate. triquetrous in trinsverse section: spicule tips dissimilar; tip of left spicute knobbed. with ala arising near tip, tip of right spicule timy. ala arising at tip; gubernaculum present. lightly sclerotised

Female Length 4.6-4.8(4.7). thax mum width in midbody region ($0.12-0.14(0.13)$, at posterior exiremity ($0.14-0.17$ (0.15): ecphatic vesicle 0.06-0.08 (0.07) long: nesophagus 0.46. $0,50(0.48)$, nerve ring 0.20 from anterior end: excretory pore 0.26-0.31 (0.29) fromo anterior end: dcind. $0,27-0,31$ (0.29) from anterior end. tail 003-0.06 (005): vulva to posterior end 0.09-0.23 (0,10); egg 0.07-0.08 (0.07) × 003-0,05 (004). Synlophe: same number of ridges in pasterion end of budy; ridges become more prominent in region of ovejecor. verninate immediately anteror to vulva: ridges of almost equal size orientation atmose loss in posterior region. Posterior extremity of female with swelling of cuticle, variable it shape, of een formog sleeve iwer tip of cail. Tarl short sonieal. valve close to anus: monodelphic, ovejector leads to short infundibulurn. then into merus: $6 g g_{\text {then-shelled. }}$ etlipsoidal.

Discusslon

In spite of the fact that the sut-family Nippostrongylinate is cosmopolitan in dist ibution, and that the type species of Nizpentanderters, N. brasiliensis, has been widely used is a movel in inmunological research. few of the specties as recognised by Duretle-Desset (1970) have bect described in detail. Features of the ssulople in the midbody region have been deseribed for vious species by Chabaud \& Durette-Desset (1966), Dufetlo-Dessel (1969. 1970), Greemberg (1972) and Lichtentels (1974) Features of the syolophe which might be useful in yecies separation have been investigated by Lichtenfels (1974) Following a detailed exammation of the symlophe in laboratory strams of N. brasiliensis and limited observations on several additional species. Equally

[^1]
detailed stodies however have not been made ofl aby songeners. Thus, apart from providng a basis lisr -allouslructural studies eurrently underway, the detuiled deseription of N mapmes is considered valuable is a comparison with sudies alfeady carried oul on N. brasilhensis.
The asymmetry of the hursa has been noted in each congener. The bursa is best studed in apical or ventral views (Durette-Dessel 1985), however in species of Nipqusiongy:/us it is extremely diffieult to open the bursa. becnue of its asymmetry. For this reason. Jefi and righe lateral viewsare provided (Figs 8. 9) as well as an apical view (Fig. 10), wheh was oblained using a live male specimen prior to fixation. The greatest morphological asymmetry oceuts in rays 6 and 8 , both of which are much larger on the left sde of the bursa than on the right though ray 4 is larger on the reght side. Apart from the bursa dtselt, the spucules and genutal cone also exhobil some degrec of asynmetry. The lin of the lef spicule is much longer and nome complex structurally than that of the right spicule. which terminates in a simple point. paralleding the asymmetry of the bursa. Details of the spicule tips have not been provided tier congeners excepr for the tups of the spicules of N. brusilionsis (see Mawson 1961). In the case orithe gemial cone the (ventral tobe, beanng papilla 0 is symunctrical, whike the donsat lobe, bearing the paired papillae 7 is asymmetrical. with the right papilla longen und hence more posteriur thatn the left (Figs 13. 14). Companable morphalogical deterils are senerally lacking for other spocies, although the gemial cone appears to be asymmetrical alsom Fig. IF of N, ruuse fif (see Chabaud \& Durete-Desset 1966). Some of these characters may prove uneful as genenc erimeria when described in all speciec

The synopotie is described fully for the fimt time and confiems the preliminary ubservations of DuretteDessel (1969) and Lichenfels (1974). It resembles that of congeners (Chatorud \& Durelte-Destal 7960 ; Dusste-Dessel 1970, 1971; Greenberg 1972) in possessing 14 ridges in the mid-body region with an oblique azis of oriencatimn directed From right-ventral (1) lett-dorsal and a consixtent gradent in rudge sze. The liajority of riages anse immedistely posteriur in the cepbatic vescle, with ridges $1,2,3$ in the leff-dorsal liold (ridges 23.4 is Lichlenfels 1974) arising immedinely antelsor 10 the deirid (1), hallwary hetween deind and cephatic vesicle (2) and posterior to the vericle (3). These origins are consistent in brates and fermales and resemble the shasion lound in N
 slighty more posteriorly, al the level of the excretory pere (Lichientels 1974) In the posterioi regiso of the mate, two additional tedeges appear in the left-ventral field. also resembling the arrangement deseribed in N. brasilivasia (5uc Lichtenfels 1974). une about 0.50 .8 mm from the posterior extremity and a second fidge in the prehurkal region. In the pasterior regent of the Female. the number of ridges remains constant, although the ridges become more similar in size and the orientation is more difticule to esablish. The extrat ridge described in fenale N. brasitiensis by Luchtenfels (1974) is abseot in N. magmus. Thus the synlophe of N nowetas resembles that of N brasilleusis very closely.
The syslem for numbering ridges employed here differs lom that used by Lichtenfels (1974). It attempts to show the axis of sementation and the homology of fidges on efther side of the axis. It demonstrates that in both the male and female of N muzume. the asymmetry of ridges and the size gradient are lost in the pusterior parts of the body with a symmetrical atrangement of almosi equal sized ridges, thostly arranged perpendicular to the body of the nematade This armangement would be cronstdered is "hyperevolved" slitte in the sense of Durerte-Desset (1985). It is of interest that in mate 2 V . mosons. in the posterior recion of the body. not only is there a reduction in size of body ridges and a loss of particular orientation hui Iso the symmetry uf the number of ridges is restoned with eqght dursal and eight ventral ridges.

Features of the synlophe of N . magnus which mogh be uvetul al the specific level are the interruption of ridges in the mad-body regiom and the irregular branching and anistomosing of ndges in the region of the male bursa. noted by Lichtenfels (1974). In the present study, the interruption of ridges (Fig. 6) oceurred in both male and female nebutodes, while branching and anastomosing (Fig 5) was seen in males. Thus Lichtemels" (19741 observations, have been confimed. but sudics of the remaining congeners are required to establish their usefulness.
Lichtenfels (1974) examined specimens of laboratory strains off N brasliensis adapted to the rat, mouse and hamster and showed that the synlophe was coostant. Independen of the hase species in which the nematode developed. Although much more limuted in their extent. the observation that the synlophe of N magmus is wemtial in specimens from the natural hos. R fiseypes. as well it in the laburatory tal, R. lumegicus.

[^2]
adds weight to his conclusioits of the stability of synlophe chasecters in diftereni host species.

The aflimities of N. magnote with congenets have nol been fully invessigated. Mawson (1961) consadered it, differentiation from N, riphos iboils is species of - dustraheligmoneroa Matwson, 19大ili based on the shape of the spicules, number of ridges and overall size and fotm \mathcal{N}, brasiliensis, due to the greater asymmetry in iss bursu, and the totn of the dorsal tay. Greenbery (1972) provided a comparative table of measurements of all species, but oot of other morphological features. Because of the nocomplete nature of the descriptions, of several species, comparisons are limited to the synlophe and bursal rays. The synlophe is apparently similar in most spectics of Nippostongevlus, but ridge I is substanually lerger than fluge 2 in N. magnus. the male of N. reperess, and N. rauschi. With the qualificateon that N. ruusche is described as hoving 14 Tidges, hut only 13 are illustrated (Chabaud \& DuretleDesset 1966, Fig. 2A). In the case of the dorsal ray of N. mogmes, the asymmetry of rays \& with a slender right roy arising betore a more robust left ray resembles N. spicas, but differs from N. rouschi. N. bravifiensis and N. djumachani which have rays δ ansing bymmetrically, though with the left raty more robust than she right, and fromi N, rysavw in which the lett ray 8 arises first and is more slender than the right ray (Enhariova 1959: Mawson 1961; Chabaud \& Durent-Dessel 1966; Tenora 1969). In N. wilentargi. the loratuching pattern of tite dorsal ray resembles that of N. ascriyi, but rays 8 are slender (Greenberg 1972),

Thus. N magmas can be dificrentiated from congeners by several motphotogical featuses. in addition to the measurements gholated by Witenberg (1972), hut dic Eeatures discussed indicate a close relationship with N. Sypios, also a parasice of endemic Australian rodenis.
N. magriss is of biogcographical interest because if is an endemie Australian species occurring in variouk species of Rathus and occasionally in Melomes cervinipes. The full hosi ronge may be greatel than this as a number of endemic roderre species in Australia have not yel been examined for helminet parasites (Mackerras 1958). The endemic species of Ratous probably arrived in Australia about one milliun years ago (Walts \& Aslin 1981), hence the omrphological differentiatun between N. brasiliensiv/ N. rapuchi and N. magnus/ N sypicus has probably eccufred over thas same period of time. There are few instancer where a lime scale can be placed on morphological difterenciation between specier of parasitic nematedes.

Acknowledgrnents

We wish to thank Christine Andersen for excelleilt echnical assstamce and Dr D. M. Speatt for cumments on the manuscript. This work was supported finaticially by the Australian Researeh Cruneal. Rats were trapped under a permit from the Victorian Deparment of Conservation and Environment (RP 91-095.

References

Chabaid, A G \& DLRETTE-DEsshel M.C. (1966) Nippesfrougghs rausrhi nap. Nemmbote parisite de
 cosmopohte des rats donostiques. Arn. puma/rax. dush, compr 41, 243-249.
Durerte-Desser, M.-C. (1969) Les systimes darétes cunculaires ches les nemalnates heligmosounces paraxiter de Muridés sustraliens thid. 44, 733-747.
(1970) Le gente Nippostromevias Lane. 1923. (Nematode-HeTgmosomatide), And. $45,815-821$. 11971) Essar de classification tles nematodes belignosomres. Corpelations avee la palcobiogoographio des holes. Mem. Mus. natr. Hist nat. Piris ser. A. Coolngle, $69,1.126$.
(1985) Trichastrangyloid nematodes and then verichrate hosts: teconstruction bf the playlogeny of a Parasilis group Adiow. Purasitol. 24. 239-306.
ERHARDiNA, B (1959) Oswutdonemat rysory robr ond Viauwlla ehorenhis n.sp. INematoda: Heligmosomaxidae) bei Chinesischen nagen. Cesko. paratitelt. 6, 93-96
 from farael iv Helmintbs from Nescobia indied Grity \& Hacdwicke, 1832 (Rodenia: Muriduc). IsraulJ Zuol 21. 6370
LKHTENFELS, I R (19/4) Number and distribution of ridges in the cuticle of Nippostrongenthe brusiliensis (Travessos 1914) (Nemaloda: Helgomosomatordeat, d. Parusital, fols 285-288.
Maivorv, P. M. (1961) Trichosmongyles from rodents in Oucensland with comments son the genus Lomgistriaza (Nematoda: Neligmewmbatidae). Aast I. 7oot 9. 9)/-826
Mackerras, M. J. (1958) Camalogue of Aurrahan orammals and their recorded incerral parasitos. II. Eutheria. Proc: Limi. Sice. NS, Wárler 83. 101-60
Q8ENDOkF. D. L. (I979) The helminth parasites of Rainus Fuscipes (Waterhouse) fron Victoria. inclading description of two new nematode species fast. I. Zool. 27. 867-879.
tenura. $F(1969)$ Parasitic nemabides of cernain rodenc from Afghanistan Examik CesAn, spol. Zowt 33, 174-192.
Warts, C H, S \& Astis. I1. J. (I981) The Randenls of Australiat (Angus \& Robertson, Australia),
 whin with futh complement of 14 ridges: arrow indicates uxis of orientationof synlophe: 16 . mate, abterior ocesphageal regin prior to origin of ridges 2-3; 17, male, 085 mm/num pesterur end showing auditional ridge (A). 18, male, immediately unterior to bursa, showing reduced size of rulges ard additional ventral ridge, 19, temate, wid-body region, wath fill complemem of 14 ridges; 20 lemale 080 mm from posterior extromity showlog redection in size of rideet bus mantenanco of sithe nomber of fidges. Scale line: 0.0 h mm

[^0]: * Department of Veterinary Scionce. University of Melhourne. Parkville. Vic. 3052
 + Brologle parasitaire. Protistologie el Helminthologic, Museum national d'Hisrife naturelle, fil rue Buflon. Parix. 75005 France.

[^1]:

 posternet end, showing brgin carrow) ol additional ridge and traching and anastomosing of ndgcs, 6 mid body reginn

 c. curelory pure; 1, labial papilla: p. submedian papilla: v. ventrial

[^2]: Fige 8-12. Nipposmengy/us mignas (Mawan), male pentalia. 8. bursa, left lateral and dorsal lobes: 9, pursa, right lateral

 10. kitio ri, right.

